On the Wiener Index of Some Edge Deleted Graphs

\author{
B. S. Durgi ${ }^{a, *}$, H. S. Ramane ${ }^{b}$, P. R. Hampiholi ${ }^{c}$, S. M. Mekkalike ${ }^{d}$
 ${ }^{a}$ Department of Mathematics, KLE Dr. M. S. Sheshgiri College of Engineering and Technology, Belgaum - 590008, India.
 ${ }^{b}$ Department of Mathematics, Karnatak University Dharwad, Dharwad 580001, India.
 ${ }^{c}$ Department of Master of Computer Applications, Gogte Institute of Technology, Belgaum - 590008, India.
 ${ }^{d}$ Department of Mathematics, KLE College of Engineering and Technology, Chikodi- 591201, India.
 ```
E-mail: bsdurgi@gmail.com
 E-mail: hsramane@yahoo.com
 E-mail: prhampi@yahoo.in
 E-mail: sachin.mekkalike4u@gmail.com

```
}

Abstract. The sum of distances between all the pairs of vertices in a connected graph is known as the Wiener index of the graph. In this paper, we obtain the Wiener index of edge complements of stars, complete subgraphs and cycles in \(K_{n}\).

Keywords: Wiener index, Distance, Complete graph, Star graph, Cycle.

2000 Mathematics subject classification: \(05 \mathrm{C} 12,05 \mathrm{C} 05\).

\section*{1. Introduction}

Let \(G=(V, E)\) be a simple connected undirected graph with vertex set \(V(G)\) and edge set \(E(G)\). Given two distinct vertices \(u, v\) of \(G\), let \(d(u, v)\) denote the distance between \(u\) and \(v\), is the number of edges on a shortest path between

\footnotetext{
*Corresponding author
Received 31 March 2015; Accepted 31 October 2015
© 2016 Academic Center for Education, Culture and Research TMU
}
\(u\) and \(v\). The Wiener index, \(W(G)\) is a well known distance based topological index introduced as a structural discriptor for acyclic organic molecules [5]. In 1947 Harold Wiener defined \(W(G)\) as the sum of the distances between all the pairs of vertices of \(G[4]\). That is,
\[
W(G)=\sum_{u<v} d(u, v)
\]
equivalently, \(W(G)\) of a graph \(G\) is defined as the half of the sum of the distances between every pair of vertices of \(G\). That is,
\[
\begin{equation*}
W(G)=\frac{1}{2} \sum_{u, v \in V(G)} d(u, v) \tag{1.1}
\end{equation*}
\]
where the summation extends over all possible pairs of distinct vertices \(u\) and \(v\) in \(V(G)\).

For more details on \(W(G)\), see \([1,3,5,6,8,9,10,11,12,13,14]\) and the references cited therein.

Since calculation of \(W(G)\) of a graph \(G\) can be computationally expensive, in this paper we provide the formulae to find \(W(G)\) of some class of graphs, which are obtained by deleting the edges of a complete graph \(K_{n}\).

Two subgraphs \(G_{1}\) and \(G_{2}\) of a graph \(G\) are said to be independent, if \(V_{1} \bigcap V_{2}\) is an empty set. where \(V(G)\) is the vertex set of \(G\).

Let \(G\) be a graph and \(H\) be a subgraph of \(G\). The edge complement of \(H\) in \(G\) is the subgraph of \(G\) obtained by deleting all the edges of \(H\) from \(G\).

For terminology not given here, we follow [7].

\section*{2. Existing Results}

Here we present some existing results, which are the motivation for the main reults of this paper.

Theorem 2.1. [2] Let \(G\) be a connected graph with \(n\) vertices having a clique \(K_{r}\) of order r. Let \(G(n, r)\) be the graph obtained from \(G\) by removing the edges of \(K_{r}, 0 \leq r \leq n-1\). Then
\[
\begin{equation*}
W(G(n, r)) \geq \frac{1}{2}[n(n-1)+r(r-1)] \tag{2.1}
\end{equation*}
\]

The equality holds if and only if \(G \cong K_{n}\), a complete graph on \(n\) vertices.
Theorem 2.2. [2] Let \(\left(K_{r}\right)_{i}, i=1,2, \cdots, k\) be the independent complete subgraphs on \(r\) vertices of \(K_{n}\). Let \(G(n, r, k)\) be the graph obtained from complete graph \(K_{n}\) by removing the edges of \(\left(K_{r}\right)_{i}, i=1,2, \cdots, k, 1 \leq k \leq\left\lfloor\frac{n}{r}\right\rfloor\) and \(0 \leq r \leq n-1\), then
\[
\begin{equation*}
W(G(n, r, k))=\frac{1}{2}[n(n-1)+k r(r-1)] \tag{2.2}
\end{equation*}
\]

Theorem 2.3. [2] Let \(e_{i}, i=1,2, \cdots, k, 0 \leq k \leq n-2\) be the edges of \(a\) complete graph \(K_{n}\) incident to a vertex \(v\) of \(K_{n}\). Let \(K_{n}(k)\) be the graph obtained from complete graph \(K_{n}\) by removing the edges \(e_{i}, i=1,2, \cdots, k\), then
\[
\begin{equation*}
W\left(K_{n}(k)\right)=\binom{n}{2}+k \tag{2.3}
\end{equation*}
\]

In the sequel of this paper, we generalize the above results and in continuation, we extend the result for the edge complements of cycles in \(K_{n}\).

\section*{3. Main Results}

Theorem 3.1. Let \(\left(K_{1, m-1}\right)_{i}, i=1,2, \ldots, k\) be the \(k\) independent star subgraphs of order \(m\) of a complete graph \(K_{n} . G(n, m, k)\) be the graph obtained by deleting the edges of these \(k\) independent star subgraphs \(\left(K_{1, m-1}\right)_{i}, i=\) \(1,2, \ldots, k\) from \(K_{n}\). Then for \(m k \leq n\),
\[
\begin{equation*}
W(G(n, m, k))=\frac{1}{2} n(n-1)+k(m-1) \tag{3.1}
\end{equation*}
\]

Proof. Let \(K_{n}\) be the complete graph on \(n\) vertices and let \(K_{1, m-1}\) be the star subgraph on \(m\) vertices of \(K_{n}\). Let \(v_{1}, v_{2}, \ldots, v_{m}\) be the vertices of first copy of \(K_{1, m-1}, v_{m}+1, v_{m}+2, \ldots, v_{2 m}\) be the vertices of second copy of \(K_{1, m-1}\), and so on. Let \(v_{(m k-1)}+1, v_{(m k-1)}+2, \ldots, v_{m k}\) are the vertices of \(k^{t h}\) copy of \(K_{1, m-1}\). And the remaining vertices of \(K_{n}\) are \(v_{m k}+1, v_{m k}+2, \ldots, v_{n}\).

If the edges of any star subgraph \(K_{1, m-1}\) are deleted from \(K_{n}\), then in the resulting subgraph,
there is 1 vertex, which is at a distance 2 with \(m-1\) vertices and at a distance 1 with \(n-m\) vertices.
There are \(m-1\) vertices, which are at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices.
And each of the remaining \(n-m\) vertices are at a distance 1 with \(n-1\) vertices.

Since in \(G(n, m, k)\), the edges of \(k\) copies of independent star subgraphs \(\left(K_{1, m-1}\right)_{i}, i=1,2, \ldots, k\) are removed from \(K_{n}\), hence in \(G(n, m, k)\), there are, \(k\) vertices, \(v_{i m}+1, i=0,1,2, \ldots, k-1\) are at a distance 2 with \(m-1\) vertices and at a distance 1 with \(n-m\) vertices.

Each of the vertices \(v_{i m}+2\) to \(v_{i m}+m, i=0,1,2, \ldots, k-1\), are at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices.
And each of the remaining \(n-m k\) vertices are at a distance 1 with each of the \(n-1\) vertices.

Therefore, using the formula (1.1), we have,
\[
\begin{aligned}
W(G(n, m, k))= & \frac{1}{2}[k((m-1)(2)+(n-m)(1)+(m-1)(2)+(m-1)(n-2)) \\
& \quad+(n-m k)(n-1)] \\
= & \frac{1}{2}\left[n^{2}-n+2 m k-2 k\right] \\
= & \frac{1}{2} n(n-1)+k(m-1)
\end{aligned}
\]

Remark 3.2. For \(k=1\) eqn.(3.1) reduces to eqn.(2.3).
Theorem 3.3. Let \(K_{1, m_{1}-1}, K_{1, m_{2}-1}, \ldots, K_{1, m_{k}-1}\) be the \(k\) independent star subgraphs of order \(m_{1}, m_{2}, \ldots, m_{k}\) respectively, of a complete graph \(K_{n}\).
\(G\left(n, m_{1}, m_{2}, \ldots, m_{k}\right)\) be the graph obtained from \(K_{n}\) by deleting the edges of atmost one copy of each of the independent stars \(K_{1, m_{1}-1}, K_{1, m_{2}-1}, \ldots, K_{1, m_{k}-1}\). Then for \(\sum_{i=1}^{k} m_{i} \leq n\),
\[
\begin{equation*}
W\left(G\left(n, m_{1}, m_{2}, \ldots, m_{k}\right)\right)=\frac{1}{2} n(n-1)+\sum_{i=1}^{k} m_{i}-k \tag{3.2}
\end{equation*}
\]

Proof. Let \(v_{1}, v_{2}, \ldots, v_{m_{1}}\) be the vertices of \(K_{1, m_{1}-1}, v_{m_{1}}+1, v_{m_{1}}+2, \ldots, v_{m_{2}}\) be the vertices of \(K_{1, m_{2}-1}\), and so on \(v_{\left(m_{k-1}\right)}+1, v_{\left(m_{k-1}\right)}+2, \ldots, v_{m_{k}}\) be the vertices of \(K_{1, m_{k-1}}\). The remaining vertices of \(K_{n}\) are \(v_{m_{k}}+1, v_{m_{k}}+2, \ldots, v_{n}\). Let \(G\left(n, m_{1}, m_{2}, \ldots, m_{k}\right)\) be the graph obtained by deleting the edges of independent star subgraphs \(K_{1, m_{i}-1}, i=1,2, \ldots, k\) from \(K_{n}\).

In \(G\left(n, m_{1}, m_{2}, \ldots, m_{k}\right)\),

Corresponding to the vertices of \(K_{n}\) from which the edges of the star \(K_{1, m_{1}-1}\) are deleted:
Vertex \(v_{1}\) is at a distance 2 with \(m_{1}-1\) vertices and at a distance 1 with \(n-m_{1}\) vertices. \(v_{2}\) to \(v_{m_{1}}\) are at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices.

Corresponding to the vertices of \(K_{n}\) from which the edges of the star \(K_{1, m_{2}-1}\) are deleted:
Vertex \(v_{m_{1}+1}\) is at a distance 2 with \(m_{2}-1\) vertices and at a distance 1 with \(n-m_{2}\) vertices. \(v_{m_{1}}+2\) to \(v_{m_{2}}\) are at a distance 2 with 1 vertex and at a
distance 1 with \(n-2\) vertices. And so on.
Corresponding to the vertices of \(K_{n}\) from which the edges of the star \(K_{1, m_{k}-1}\) are deleted:
Vertex \(v_{m_{k-1}+1}\) is at a distance 2 with \(m_{k}-1\) vertices and at a distance 1 with \(n-m_{k}\) vertices. \(v_{m_{k-1}+2}\) to \(v_{m_{k}}\) are at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices.

And each of the remaining vertices \(n-\sum_{i=1}^{k} m_{i}\) to \(v_{n}\) are at a distance 1 with \(n-1\) vertices.

Therefore, using the formula (1.1), we have,
\[
\begin{aligned}
& W\left[G\left(n, m_{1}, m_{2}, \ldots m_{k}\right)\right]=\frac{1}{2}\left[\left(m_{1}-1\right)(2)+\left(n-m_{1}\right)(1)\right. \\
&+\left(m_{1}-1\right)[(1)(2)+(n-2)(1)] \\
&+\left(m_{2}-1\right)(2)+\left(n-m_{2}\right)(1) \\
&+\left(m_{2}-1\right)[(1)(2)+(n-2)(1)] \\
&+\cdots+\left(m_{k}-1\right)(2)+\left(n-m_{k}\right)(1) \\
&+\left(m_{k}-1\right)[(1)(2)+(n-2)(1)] \\
&\left.+\left(n-\sum_{i=1}^{k} m_{i}\right)(n-1)\right] \\
&= \frac{1}{2}\left[\left(m_{1} n+m_{1}-2\right)+\left(m_{2} n+m_{2}-2\right)\right. \\
&\left.+\cdots+\left(m_{k} n+m_{k}-2\right)+(n-1)\left(n-\sum_{i=1}^{k} m_{i}\right)\right] \\
&= \frac{1}{2}\left[2 \sum_{i=1}^{k} m_{i}-2 k+n(n-1)\right] \\
&= \frac{1}{2} n(n-1)+\sum_{i=1}^{k} m_{i}-k
\end{aligned}
\]

Remark 3.4. For \(m_{1}=m_{2}=\cdots=m_{k}=m\), eqn.(3.2) reduces to eqn.(3.1).
Corollary 3.5. Let \(G\left(n,\left(m_{1}, l_{1}\right),\left(m_{2}, l_{2}\right), \ldots,\left(m_{k}, l_{k}\right)\right)\) be the graph obtained from \(K_{n}\) by deleting the edges of independent stars \(K_{1, m_{1}-1}\left(l_{1}\right.\) copies) , \(K_{1, m_{2}-1}\) ( \(l_{2}\) copies), \(\ldots, K_{1, m_{k}-1}\) ( \(l_{k}\) copies). Then for \(\sum_{i=1}^{k} m_{i} l_{i} \leq n\),
\[
\begin{equation*}
W\left[G\left(n,\left(m_{1}, l_{1}\right),\left(m_{2}, l_{2}\right), \ldots,\left(m_{k}, l_{k}\right)\right]=\frac{1}{2} n(n-1)+\sum_{i=1}^{k} m_{i} l_{i}-\sum_{i=1}^{k} l_{i}\right. \tag{3.3}
\end{equation*}
\]

Proof. If the edges of \(l_{1}\) copies of the star \(K_{1, m_{1}-1}, l_{2}\) copies of the star \(K_{1, m_{2}-1}, \ldots, l_{k}\) copies of the star \(K_{1, m_{k}-1}\), are deleted from \(K_{n}\), then in \(G\left(n,\left(m_{1}, l_{1}\right),\left(m_{2}, l_{2}\right), \ldots,\left(m_{k}, l_{k}\right)\right)\),
for each of the \(l_{1}\) copies of the edge deleted stars \(K_{1, m_{1}-1}\), there is 1 vertex which is, at a distance 2 with \(m_{1}-1\) vertices and at a distance 1 with \(n-m_{1}\) vertices. And there are \(m_{1}-1\) vertices which are, at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices.

For each of the \(l_{2}\) copies of the edge deleted stars \(K_{1, m_{2}-1}\), there is 1 vertex (say \(v_{m_{1}+1}\) ), is at a distance 2 with \(m_{2}-1\) vertices and at a distance 1 with \(n-m_{2}\) vertices. And there are \(m_{2}-1\) vertices (say \(v_{m_{1}+2}\) to \(v_{m_{2}}\) ) are at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices. and so on.

For each of the \(l_{k}\) copies of the edge deleted stars \(K_{1, m_{k}-1}\), there is 1 vertex (say \(v_{m_{k-1}+1}\) ) is at a distance 2 with \(m_{k}-1\) vertices and at a distance 1 with \(n-m_{k}\) vertices, and there are \(v_{m_{k}}-1\) vertices are at a distance 2 with 1 vertex and at a distance 1 with \(n-2\) vertices.

And each of the remaining vertices \(n-\sum_{i=1}^{k} m_{i}\) to \(v_{n}\) are at a distance 1 with \(n-1\) vertices.

Therefore, using the formula (1.1), we have,
\[
\begin{aligned}
& W\left[G\left(n, m_{1}, m_{2}, \ldots m_{k}\right)\right]=\frac{1}{2}\{ l_{1}\left[\left(m_{1}-1\right)(2)+\left(n-m_{1}\right)(1)\right. \\
&\left.+\left(m_{1}-1\right)((1)(2)+(n-2)(1))\right] \\
&+l_{2}\left[\left(m_{2}-1\right)(2)+\left(n-m_{2}\right)(1)\right. \\
&\left.+\left(m_{2}-1\right)[(1)(2)+(n-2)(1)]\right] \\
&+\cdots+l_{k}\left[\left(m_{k}-1\right)(2)+\left(n-m_{k}\right)(1)\right. \\
&\left.+\left(m_{k}-1\right)[(1)(2)+(n-2)(1)]\right] \\
&\left.+\left(n-\sum_{i=1}^{k} m_{i}\right)(n-1)\right\} \\
&=\frac{1}{2}[ l_{1}\left(m_{1} n+m_{1}-2\right)+l_{2}\left(m_{2} n+m_{2}-2\right)+\ldots \\
&\left.+l_{k}\left(m_{k} n+m_{k}-2\right)+(n-1)\left(n-\sum_{i=1}^{k} m_{i} l_{i}\right)\right] \\
&=\frac{1}{2} n(n-1)+\sum_{i=1}^{k} m_{i} l_{i}-\sum_{i=1}^{k} l_{i}
\end{aligned}
\]

Theorem 3.6. Let \(K_{r_{1}}, K_{r_{2}}, \ldots, K_{r_{k}}\) be the complete subgraphs of order \(r_{1}, r_{2}, \ldots, r_{k}\) respectively, of a complete graph \(K_{n} . G\left(n, r_{1}, r_{2}, \ldots, r_{k}\right)\) be the graph obtained from \(K_{n}\) by deleting the edges of atmost one copy of each of the independent complete subgraphs \(K_{r_{1}}, K_{r_{2}}, \ldots, K_{r_{k}}\). Then for \(\sum_{i=1}^{k} r_{i} \leq n\),
\[
\begin{equation*}
W\left(G\left(n, r_{1}, r_{2}, \ldots, r_{k}\right)\right)=\frac{1}{2}\left[n(n-1)+\sum_{i=1}^{k} r_{i}^{2}-\sum_{i=1}^{k} r_{i}\right] \tag{3.4}
\end{equation*}
\]

Proof. Let \(v_{1}, v_{2}, \ldots, v_{m_{1}}\) be the vertices of \(K_{r_{1}}, v_{m_{1}}+1, v_{m_{1}}+2, \ldots, v_{m_{2}}\) be the vertices of \(K_{r_{2}}\), and so on. \(v_{\left(m_{k-1}\right)}+1, v_{\left(m_{k-1}\right)}+2, \ldots, v_{m_{k}}\) be the vertices of \(K_{r_{k}}\). The remaining vertices of \(K_{n}\) are \(v_{m_{k}}+1, v_{m_{k}}+2, \ldots, v_{n}\). Let \(G\left(n, r_{1}, r_{2}, \ldots, r_{k}\right)\) be the graph obtained by deleting the edges of independent complete subgraphs \(K_{r_{1}}, K_{r_{2}}, \ldots, K_{r_{k}}\) from \(K_{n}\).

In \(G\left(n, r_{1}, r_{2}, \ldots, r_{k}\right)\),
There are \(r_{1}\) vertices each of which are at a distance 2 with each of the \(r_{1}-1\) vertices and at a distance 1 with \(n-r_{1}\) vertices.

There are \(r_{2}\) vertices each of which are at a distance 2 with each of the \(r_{2}-1\) vertices and at a distance 1 with \(n-r_{2}\) vertices, and so on.

There are \(r_{k}\) vertices each of which are at a distance 2 with each of the \(r_{k}-1\) vertices and at a distance 1 with \(n-r_{k}\) vertices.

And the remaining \(n-\sum_{i=1}^{k} r_{i}\) vertices are at a distance 1 with each of the \(n-1\) vertices.

Therefore, using the formula (1.1), we have,
\[
\begin{aligned}
W\left(G\left(n, r_{1}, r_{2}, \ldots r_{k}\right)\right)=\frac{1}{2} & {\left[r_{1}\left[\left(r_{1}-1\right)(2)+\left(n-r_{1}\right)(1)\right]\right.} \\
& +r_{2}\left[\left(r_{2}-1\right)(2)+\left(n-r_{2}\right)(1)\right] \\
& +\cdots+r_{k}\left[\left(r_{k}-1\right)(2)+\left(n-r_{k}\right)(1)\right] \\
& \left.+\left(n-\sum_{i=1}^{k} r_{i}\right)(n-1)(1)\right] \\
= & \frac{1}{2}\left[n(n-1)+\sum_{i=1}^{k} r_{i}^{2}-\sum_{i=1}^{k} r_{i}\right]
\end{aligned}
\]

Remark 3.7. For \(r_{1}=r_{2}=\ldots, r_{k}=r\), eqn.(3.4) reduces to eqn. (2.2).
Corollary 3.8. Let \(G\left(n,\left(r_{1}, l_{1}\right),\left(r_{2}, l_{2}\right), \ldots,\left(r_{k}, l_{k}\right)\right)\) be the graph obtained from \(K_{n}\) by deleting the edges of independent complete subgraphs \(K_{r_{1}}\) ( \(l_{1}\) copies), \(K_{r_{2}}\) ( \(l_{2}\) copies), \(\ldots, K_{r_{k}}\) ( \(l_{k}\) copies). Then for \(\sum_{i=1}^{k} m_{i} l_{i} \leq n\),
\[
\begin{equation*}
W\left[G\left(n,\left(r_{1}, l_{1}\right),\left(r_{2}, l_{2}\right), \ldots,\left(r_{k}, l_{k}\right)\right]=\frac{1}{2}\left[n(n-1)+\sum_{i=1}^{k} l_{i} r_{i}^{2}-\sum_{i=1}^{k} l_{i} r_{i}\right]\right. \tag{3.5}
\end{equation*}
\]

Proof. If the edges of independent complete subgraphs \(K_{r_{1}}\) ( \(l_{1}\) copies), \(K_{r_{2}}\) ( \(l_{2}\) copies \(), \ldots, K_{r_{k}}\left(l_{k}\right.\) copies \()\) are deleted from \(K_{n}\).
\[
\text { Then in } G\left(n,\left(r_{1}, l_{1}\right),\left(r_{2}, l_{2}\right), \ldots,\left(r_{k}, l_{k}\right)\right) \text {, }
\]
for each of the \(l_{1}\) copies of the edge deleted complete subgraphs \(K_{r_{1}}\), there are \(r_{1}\) vertices each of which are at a distance 2 with each of the \(r_{1}-1\) vertices and at a distance 1 with \(n-r_{1}\) vertices.

For each of the \(l_{2}\) copies of the edge deleted complete subgraphs \(K_{r_{2}}\), there are \(r_{2}\) vertices each of which are at a distance 2 with each of the \(r_{2}-1\) vertices and at a distance 1 with \(n-r_{2}\) vertices, and so on.

For each of the \(l_{k}\) copies of the edge deleted complete subgraphs \(K_{r_{k}}\), there are \(r_{k}\) vertices each of which are at a distance 2 with each of the \(r_{k}-1\) vertices and at a distance 1 with \(n-r_{k}\) vertices.

And the remaining \(n-\sum_{i=1}^{k} r_{i}\) vertices are at a distance 1 with each of the \(n-1\) vertices.

Therefore, using the formula (1.1), we have,
\[
\begin{aligned}
& W\left[G\left(n,\left(r_{1}, l_{1}\right),\left(r_{2}, l_{2}\right), \ldots,\left(r_{k}, l_{k}\right)\right]=\frac{1}{2}\{ \right. l_{1}\left(r_{1}\left[\left(r_{1}-1\right)(2)+\left(n-r_{1}\right)(1)\right]\right) \\
&+l_{2}\left\{r_{2}\left[\left(r_{2}-1\right)(2)+\left(n-r_{2}\right)(1)\right]\right\} \\
&+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+ \\
&+l_{k}\left\{r_{k}\left[\left(r_{k}-1\right)(2)+\left(n-r_{k}\right)(1)\right]\right\} \\
&\left.+\left(n-\sum_{i=1}^{k} r_{i}\right)(n-1)(1)\right\} \\
&=\frac{1}{2}\left[l_{1} r_{1}\left(n+r_{1}-2\right)+l_{2} r_{2}\left(n+r_{2}-2\right)\right. \\
&+\cdots+l_{k} r_{k}\left(n+r_{k}-2\right) \\
&\left.+(n-1)\left(n-\sum_{i=1}^{k} l_{i} r_{i}\right)\right] \\
&= \frac{1}{2}\left\{n(n-1)+\sum_{i=1}^{k} l_{i} r_{i}^{2}-\sum_{i=1}^{k} l_{i} r_{i}\right\}
\end{aligned}
\]

Theorem 3.9. Let \(K_{n}\) be a complete graph of order \(n\). Let \(C_{p}\) be a cycle subgraph on \(p\) vertices of \(K_{n} . G(n, p)\) be the graph obtained from \(K_{n}\) by deleting the edges of \(C_{p}\). Then for \(p \leq n\),
\[
\begin{equation*}
W(G(n, p))=\frac{1}{2} n(n-1)+p \tag{3.6}
\end{equation*}
\]

Proof. In \(G(n, p)\), each of the vertex of \(C_{p}\) in \(G(n, p)\) is at a distance 2 with 2 vertices and at a distance 1 with \(n-3\) vertices. And each of the remaining \(n-p\) vertex is at a distance 1 with \(n-1\) vertices.
Therefore, using the formula 1.1, we have,
\[
\begin{aligned}
W(G(n, p)) & \left.=\frac{1}{2}[p((2)(2)+(n-3)(1)))+(n-p)(n-1)\right] \\
& =\frac{1}{2} n(n-1)+p
\end{aligned}
\]

\section*{4. Discussion}

By means of above results, we have generalized some of the results obtained in [2], for the Wiener indices. The results obtained in [2] can be obtained by our results as special cases.

\section*{Acknowledgments}

All the authors are grateful to the anonymous referees for their helpful comments and suggestions.

\section*{References}
1. I. Gutman, Y. Yeh, S. Lee, Y. Luo, Some recent results in the theory of Wiener number, Indian J. Chem., 32A, (1993), 651 - 661.
2. H. S. Ramane, D. S. Revankar, A. B. Ganagi, On the Wiener index of a graph, J. Indones. Math. Soc., 18(1), (2012), 57-66.
3. F. Buckley, F. Harary, Distance in Graph, Addison - Wesley, Redwood, 1990.
4. S. Nikolic, N. Trinajstic, Z. Mihalic, The Wiener index: development and applications, Croat. Chem. Acta, 68, (1995), 105-129.
5. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69, (1947), 17-20.
6. A. A Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66, (2001), 211 -249.
7. J. A. Bondy, U. S. R. Murthy, Graph Theory with Applications, Elsevier, North-Holland, 1976.
8. S. Klavzar, I. Gutman, Wiener number of vertex - weighted graphs and a chemical application, Discrete Appl. Math., 80, (1997), 73 -81.
9. B. Mohr, T. Pisansky, How to compute the Weiner index of a graph, Journal of Mathematical Chemistry, 2, (1988), \(267-277\).
10. A. Graovac, T. Pisansky, On the Wiener index of a graph, J. Math. chem., 8, (1991), 53-62.
11. I. Gutman, Y. N. Yeh, S. L. Lee, Some recent results in the theory of Wiener number, Indian J. chem., 32A, (1993), \(651-661\).
12. K. Xu, M. Liu, K. C. Das, I. Gutman, B. Fortula, A survey on graphs extremal with respect to distance - based topological indices, Match Commun. Math. Comput. Chem., 71, (2014), 461-508.
13. G. H. Fath-Tabar, A. R. Ashrafi, The hyper weiner polynomial of graphs, Iranian Journal of Mathematical Sciences and Informaatics, 6, (2011), 67-74.
14. T. Doslic, A. Graovac, F. Cataldo, O. Ori, Note on some distance - based invarients for 2 - dimensional square and comb lattices, Iranian Journal of Mathematical Sciences and Informaatics, 5, (2010), 61-68.```

